Cauchy problem to the homogeneous Boltzmann equation with Debye–Yukawa potential for measure initial datum
نویسندگان
چکیده
منابع مشابه
The Spatially Homogeneous Relativistic Boltzmann Equation with a Hard Potential
In this paper, we study spatially homogeneous solutions of the Boltzmann equation in special relativity and in Robertson-Walker spacetimes. We obtain an analogue of the Povzner inequality in the relativistic case and use it to prove global existence theorems. We show that global solutions exist for a certain class of collision cross sections of the hard potential type in Minkowski space and in ...
متن کاملExistence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition
In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.
متن کاملCauchy Problem of Nonlinear Schrödinger Equation with Initial Data
In this paper, we consider in Rn the Cauchy problem for the nonlinear Schrödinger equation with initial data in the Sobolev space W s,p for p < 2. It is well known that this problem is ill posed. However, we show that after a linear transformation by the linear semigroup the problem becomes locally well posed in W s,p for 2n n+1 < p < 2 and s > n(1 − 1 p ). Moreover, we show that in one space d...
متن کاملExistence of Global Solution of the Cauchy Problem for the Relativistic Boltzmann Equation with Hard Interactions
By using the DiPerna and Lions techniques for the nonrelativistic Boltzmann equation, it is shown that there exists a global mild solution to the Cauchy problem for the relativistic Boltzmann equation with the assumptions of the relativistic scattering cross section including some relativistic hard interactions and the initial data satifying finite mass, “inertia”, energy and entropy.
متن کاملNvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Sciences
سال: 2017
ISSN: 1539-6746,1945-0796
DOI: 10.4310/cms.2017.v15.n4.a11